

Étude de la salinité dans la région de Tanger au Maroc

Travail réalisé par Brousse Xavier Responsable Monsieur Valles Vincent

Licence de Sciences de la Vie et de la Terre - parcours STE Faculté des Sciences – Université d'Avignon et des Pays de Vaucluse

L'étude s'organise autour des données de conductivité récoltées sur le terrain.

Notre travail portera en effet à retracer l'historique de l'évolution de la salinité dans cette zone. On cherchera a comprendre également comment elle a pu évoluer de la sorte, les causes anthropiques et naturelles qui aurait pu accélérer le phénomène de remontée du sel dans cette zone.

Contexte

- Région de Tanger au Maroc
- Réseau hydrographique développé sur la zone
- Sol constitué de grès
- · Soumis a des fort coefficient de marée
- Zone d'étude inondable

Objectif:

- Comprendre la spatialisation de la salinité sur la zone
- Produire des cartes ainsi que des variogrammes
- Réaliser des analyses statistique des données
- Utiliser des logiciels de traitement ainsi que de modélisation

Contexte géologique / hydrologique

Dans notre zone d'étude on retrouve des terrains post nappe qui contiennent en majorité des grès, et un sol plutôt latéritique par endroit, se compose essentiellement de marnes et d'argiles très érodables tandis que les roches moyennement résistantes appartiennent aux Nappes de flyschs. Ces dernières sont constituées d'une alternance de bancs de grès massif plutôt résistants et de bancs de pélites argileuses très altérées et déformables

Le bassin de Tahaddart a une superficie d'environ 2740 km 2. Ce bassin versant regroupe deux petits bassins versants adjacents qui sont séparés par un haut relief, la colline de Haouta Bn i Mediar, et dont les cours d'eau, respectivement l'Oued Mharhar au nord et l'Oued El Hachef au sud, se rejoignent près de la côte pour former l'Oued Tahaddart.

Photo satellite de 2002

Photo satellite 2011

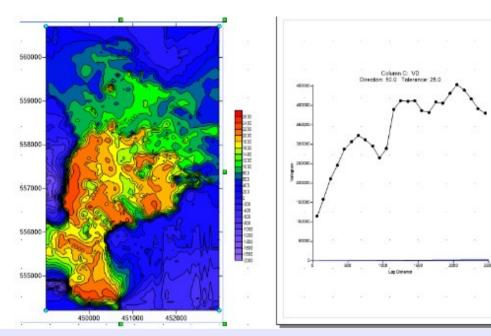
Evolution de la zone d'étude

Photo satellite 2020

Acquisition de la données

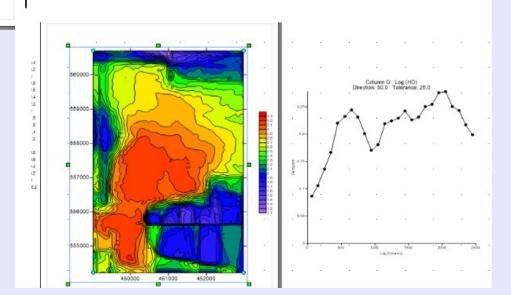
AVIGNON UNIVERSITÉ

L' EM 38 va nous permettre d'obtenir des mesure de conductivité selon un pôle VD et HD qui est ni plus ni moins qu'une mesure à la verticale pour VD et une mesure de conductivité HD à la verticale.


La conductivité dans les lacs et les cours d'eau varie généralement entre 0 et 200 μ S/cm, tandis que dans les grands fleuves, la conductivité peut atteindre 1000 μ S/cm. Une conductivité très élevée (1 000 à 10 000 μ S/cm) est un indicateur de conditions salines.

sans aucune exigence de contact sol-instrument. Avec une profondeur d'exploration maximale efficace de 1,5 m, les applications dans l'agriculture, les sciences générales sont courantes.

Carte krigée



Variogramme et carte krigée de la zone d'étude pour les valeurs VD:

La zone la plus conductrice se situe dans la même zone géographique avec les deux pôles de part et d'autre de la carte. On retrouve également bien notre cordon dunaire plus conducteur et les intrants d'eau douce à l'ouest et en bas de la zone d'étude. On peut relever dans la zone d'étude deux parties distinctes en termes de salinité comprise entre les cordons dunaires pour la zone ou l'on se trouve en ultra salinité, puis plus au Nord on se trouve dans une zone saline avec présence par endroit de plante halophile.

Variogramme et carte krigée de la zone d'étude pour les valeurs HD

la partie la plus orangé se trouve contre le cordon dunaire. L'explication à cela vient du faite que la zone est sujette à de nombreuses inondations et submersions marine ce qui permet dans un effet assez limité de faire redescendre le sel en profondeur hors cette zone la proche du cordon dunaire n'est pas affecté par les inondations ce qui ne permet pas au sel de remonter par capillarité et d'être diluée dans le sol comme c'est le cas dans le reste de la zone d'étude. De plus on peut voir que par l'ouest arrive une rivière qui dilue aussi la salinité dans le sol dans cette partie.

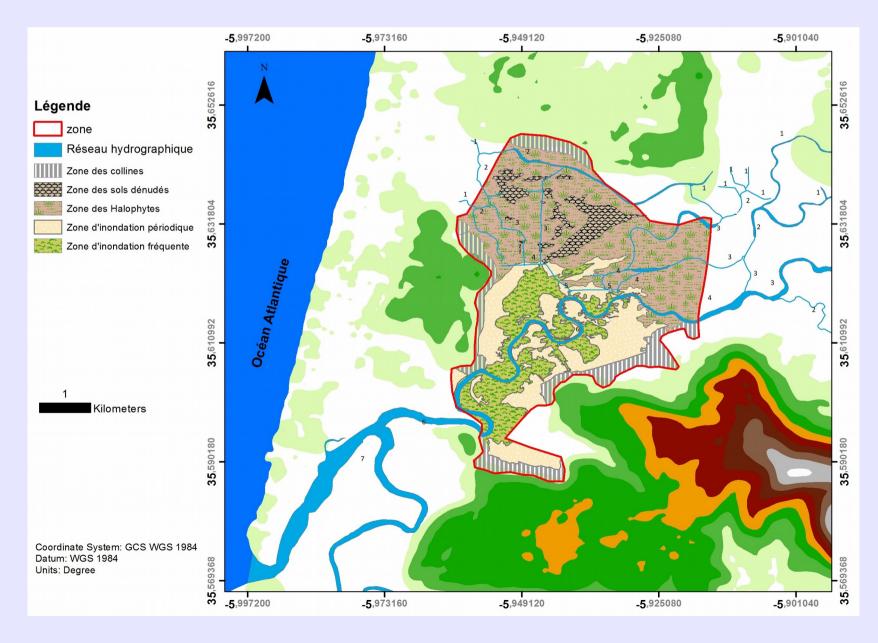
Statistique descriptive

- Anova
- Analyse factorielle discriminante (AFD)

Matrice de co	Matrice de confusion pour les résultats de la validation croisée :						
de \ à	Zone	Zone	Zone des	Zone des	Zone des	Total	% correct
ue \ a	d'inondation	d'inondatio	Halophytes	collines	sons		
Zone d'inone	848	0	19	0	0	867	97.81%
Zone d'inone	264	787	49	0	0	1100	71.55%
Zone des Hal	0	0	1329	0	0	1329	100.00%
Zone des col	4	3	112	568	0	687	82.68%
Zone des sor	1	6	178	2	0	187	0.00%
Total	1117	796	1687	570	0	4170	84.70%

Machine learning

K plus proche voisin


AVIGNON UNIVERSITÉ

Classifieur naïf bayésien

Résultats pa	ar _c classe :			
	e			
Classe	,Zone d'inondation fréquente	Zone d'inondation périodique	Zone des Halophytes	Zone des collines
Objets	T 6	4	5	1
	r PredObs1	PredObs4	PredObs11	PredObs16
	a PredObs2	PredObs6	PredObs12	PredObs17
	n PredObs3	PredObs7	PredObs13	PredObs18
	S PredObs5	PredObs9	PredObs14	PredObs19
	PredObs8		PredObs15	PredObs20
	a PredObs10			PredObs21
	I			PredObs22
	s			PredObs23
	e			PredObs24
	,			PredObs25

Résultats pa	r classe :		
Classe	nondation pé	e des Haloph	ne des colline
Objets	6	11	8
	PredObs3	PredObs1	PredObs17
	PredObs4	PredObs2	PredObs19
	PredObs5	PredObs8	PredObs20
	PredObs6	PredObs10	PredObs21
	PredObs7	PredObs11	PredObs22
	PredObs9	PredObs12	PredObs23
		PredObs13	PredObs24
		PredObs14	PredObs25
		PredObs15	
		PredObs16	
		PredObs18	

Statistique en liens avec la carte

Conclusion

- Analyse de la répartition de la salinité
- Compréhension des différents phénomènes pouvant conduire a la salinisation d'un sol
- L'impacte de la salinisation sur les végétaux
 Partie technique
- Utilisation de logiciel de statistique
- Utilisation d'algorithme de machine learning
- Utilisation d'un logiciel de modélisation